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Abstract - This paper purposes a new method for 
selecting the most discriminant rotation invariant patterns 
in local binary patterns and local ternary patterns. Our 
experiments show that a selection based on variance 
performs better than the recently proposed method of using 
dominant local binary patterns (DLBP). Our method uses a 
random subspace of patterns with higher variance. 
Features are transformed using Neighborhood Preserving 
Embedding (NPE) and then used to train a support vector 
machine. Moreover, we extend DLBP with local ternary 
patterns (DLTP) and examine methods for building a 
supervised random subspace of classifiers where each bin 
of the histogram has a probability of belonging to a given 
subspace according to its occurrence frequencies. We 
compare several texture descriptors and show that the 
random subspace ensemble based on NPE features 
outperforms other recent state-of-the-art approaches.  This 
conclusion is based on extensive experiments conducted in 
several domains using five benchmark databases.   

Keywords: texture descriptors; local binary patterns; local 
ternary patterns; non-uniform patterns; support vector 
machines. 
 

 

1 Introduction 

  Rapid advances in imaging technology are leading to 
the creation of large stockpiles of images in numerous 
fields. This is giving rise to a host of new classification 
problems and a pressing need to develop new machine 
learning techniques. Nowhere is this more apparent than in 
medicine.  If new methods for automatically extracting 
relevant medical images of multiple patients that share 
salient features could be found, this would greatly improve 
diagnosis and treatment. An example of new research in 
medicine that these databases are fostering is the potential 
use of machine face classification applied to medical 
diagnosis [1, 2]. Facial abnormalities often reflect disease, 
and recent research has demonstrated the effectiveness of 
detecting these conditions using face recognition 
techniques, see  for example, [3] and [4].  Since a host of 
environmental and genetic syndromes leave signs in the 

face, medical face recognition systems will become an 
exciting new area of future medical research [5]. 

Many state-of-the-art machine learning approaches 
optimized for image classification make use of texture 
descriptors. Local Binary Patterns (LBP), first proposed by 
[6], are currently one of the most popular texture 
descriptors. The popularity of LBP as a feature descriptor is 
due in part to the fact that LBP is very resistant to lighting 
changes. This makes LBP a good choice for coding fine 
details. LBP is also powerful and low in computational 
complexity. Since the 1990s, LBP texture descriptors have 
been the focus of considerable research, especially by Prof. 
Pietikainen's group [6], as well as [7, 8]. 

In the field of medicine, LBP has been used to find 
relevant slices in brain MR (magnetic resonance) volumes 
[9], to classify true mammographic masses from normal 
parenchyma [10], and as textural features extracted from 
thyroid slices [11]. A  number of researchers have recently 
investigated automated cell phenotype image classification 
using LPB (see, for example, [12]. A wide collection of 
papers that explore LBP in medical applications is available 
at 
http://www.ee.oulu.fi/mvg/page/lbp_bibliography#biomedi
cal. LPB has also been used in recent research in face 
recognition [7, 13], as well as in many other interesting 
areas of research, including work on smart guns [8] and 
fingerprint identification [14].  

Until recently, LBP descriptors have utilized only the 
uniform patterns. Recent work has attempted to augment 
LBP by using non-uniform patterns. In [15] combining 
uniform patterns with a few non-uniform patterns was 
shown to improve performance. In [16] rotation invariant 
patterns are selected, instead of the uniform patterns. They 
propose choosing patterns that represents 80% of the 
patterns in the training data. Several other variants have 
recently been proposed, see, e.g., [17]. 

In this work we extend the work of [16] by focusing on 
different methods for selecting the best performing bins. 
Our goal is to enhance performance by selecting a set of 
rotation invariant patterns for LBP and LTP. We do this by 
comparing the simple variance selection,  i.e., by selecting 
the histogram bins with higher variance using the training 
data, with the dominant pattern selection method proposed 
in [16]. Furthermore, we propose using a “supervised" 
random subspace of classifiers, where each bin of the 
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histogram has a probability of belonging to a given 
subspace according to its occurrence frequencies in the 
training data. In our experiments for both LBP and LTP, the 
simple variance selection process we propose outperforms 
the dominant patterns proposed in [16]. The best 
performance is obtained with a random subspace ensemble, 
where a set of a high variance features are projected by 
NPE before being fed into a support vector machine 
classifier. 

The remainder of this paper is organized as follows. 
In section 2 we provide an overview of LBP as a descriptor. 
In section 3 we detail our proposed approach using 
dominant patterns. In section 4, we briefly describe the five 
datasets used in our experiments. In section 5, we report 
experimental results. Finally, in section 6, we provide a few 
concluding remarks and directions for future research. 
  

2. The LBP operator 
 The LBP operator is calculated by evaluating the 

binary differences between the gray value of a pixel x and 
the gray values of P neighboring pixels on a circle of radius 
R around x. By selecting the smallest value of P-1 bitwise 
shift operations on the binary pattern, LBP is made rotation 
invariant. A pattern is uniform if the number of transactions 
in the sequence between 0 and 1 is less than or equal to two.  
The number of possible uniform patterns is P+1. The 
feature vector extracted from each cell is the LBP histogram 
of dimension P+2 (a single bin for non-uniform patterns).  

Unfortunately, there is a loss of valuable anisotropic 
structural information using the circularly symmetric 
neighborhood to solve the rotation invariant problem. An 
elliptical neighborhood definition that preserves anisotropic 
structural information is proposed in [18]. 
Conventional LBP is also sensitive to noise in the near-
uniform image regions. Local Ternary Patterns (LTP), as 
proposed by [19], overcome this problem. In LTP the 
difference between a pixel x and its neighbor u is encoded 
by 3 values according to a threshold τ :  1 if u ≥ x + τ ; -1 if 
u ≤ x – τ ; else 0. The ternary pattern is split into two binary 
patterns according to its positive and negative components, 
as illustrated in figure 1. The histograms that are computed 
from the binary patterns are then concatenated to form the 
feature vector. 

An interesting variant of a 3-valued coding scheme 
that makes LBP more noise resistant is proposed in [20] 
[21]. In this work a fuzzy threshold function is applied. 
Another method for making LBP more robust in terms of 
noise is to use median binary patterns as proposed, for 
example, in [22], where the intensity space is mapped to 
LBP by thresholding a given pixel against the median value 
of its neighborhood.  

The extracted histogram in conventional LBP is 
large. Using center-symmetric local binary patterns [23], it 
is possible to reduce the LBP histogram dimension. This is 

accomplished by comparing a given pixel with center-
symmetric pairs of pixels.  Given 8 neighbors, center-
symmetric LBP produces only 24 binary patterns in contrast 
to the 28 different binary patterns produced by conventional 
LBP. 

 
 

 

Figure 1. Example ternary code divided into positive 
and negative LBP codes. 

 
 

A method for improving classification combines LBP 
descriptors with various preprocessing methods, see [14, 
24]. In [24] Gabor wavelets are combined with the LBP 
operator to represent face images. This method of 
representing faces is high in dimensionality, however, since 
multiple Gabor transformations are performed.  Zhang et 
al., [24] apply dimensionality reduction techniques to the 
output of the LBP operators to offset this problem. 

3. Proposed approach 
Our goal is to enhance classifier performance by 

selecting a set of rotation invariant patterns for LBP and 
LTP. Below is a step by step outline of our approach: 

Step 1: The 250 bins with highest variance are 
extracted. 

Step 2: A random subset of 125 features are then 
selected.  

Step 3: PCA followed by NPE is used to reduce this 
set of features to 30.1 

Step 4: A support vector machine is trained and tested 
using the features.  

Step 5: Steps 2-4 are performed 50 times. 
Step 6: The 50 classifier results are then combined 

using the sum rule. 
 
 

                                                           
1 This is the default value in the NPE toolbox available at 
http://www.cs.uiuc.edu/homes/dengcai2/Data/ data.html. The 
number neighbors used for building the projection matrix is also 
the default value of 5. 
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As can be seen in step 1, we use a variance selection 
process. We select the histogram bins with the highest 
variance in the training data instead of the dominant pattern 
selection method proposed in [16]. So our  methods can 
easily be reproduced, we modify the original LBP code 
found at http://www.ee.oulu.fi/mvg/page/lbp_ 
matlab.2 

After selecting a random subset of features in step 2, 
we use Neighborhood preserving embedding (NPE) in step 
3, as a bin selector.  NPE [25] is a feature transform 
technique that differs from principal component analysis 
(PCA) in that it preserves the local neighborhood structure 
on the data manifold and is thus less sensitive to outliers 
than PCA. However, we use PCA to reduce the size of the 
features. Since we retain 99.999% of the variance3 in the 
data, little information is lost in our application of PCA as a 
feature reduction method. This greatly reduces 
computational complexity. 

In step 4, we feed the features in a support vector 
machine (SVM) [26]. We repeat this process 50 times and 
in step 4 combine the results of the 50 classifiers using the 
sum rule. 

In addition to the above process, we run experiments 
using a supervised random subspace of classifiers coupled 
with standard DLBP and DLTP. In the tested supervised 
random subspace method, each feature is not randomly 
selected but has a probability of being chosen based on the 
occurrence frequencies in the training data. This is 
accomplished as follows: given xi, the sum of the 
occurrence frequency of the i-th bin of the histogram in the 
training data, the probability of the i-th bin to be chosen is 
given by xi/∑i xi.  

 
4.  Datasets 

Below we describe each of the datasets used in our 
experiments, along with the evaluation protocols. In 
general, if the database contains two classes, we use a base 
SVM. If the database contains more than two classes, we 
use the standard method of handling multiclass problems 
with SVM, viz., one versus one SVM.  
                                                           

                                                          

2 we have extracted the uniform patterns with 
getmapping011(16,'riu2') while the non-uniform patterns (i.e. all 
the rotation invariant patterns) are extracted by 
getmapping011(16,'ri') 
3           w=pca(dataset(TR),0.99999);%function of the PRTools 
3.1.7 
            TR=+(w*dataset(TR)); 
            TE=+(w*dataset(TE)); 
            clear W 
            options = []; 
            options.k = 5; 
            options.NeighborMode = 'Supervised'; 
            options.gnd = yTR; 
            [eigvector, eigvalue] = NPE(options, TR); 
 

The performance measure adopted in the experiments 
reported in this paper is the area under the ROC-curve [27] 
in the 2-classes problems and the accuracy in the multi-class 
problems. The area under the ROC-curve is a two-
dimensional measure of classification performance that 
plots the probability of classifying correctly the genuine 
examples against the rate of incorrectly classifying impostor 
examples. 
 
Infant COPE database and evaluation protocols 

First described in [1], the Infant COPE 
(Classification Of Pain Expressions) database contains 204 
facial images of 26 neonates experiencing a variety of 
nonpain stressors and one pain stimulus (to the puncture on 
the heel of a lance followed by repeated squeezing of the 
heel as blood samples were taken for a state mandatory 
blood exam). Of the 204 images,144 fall in the category of 
nonpain and 60 in the category of pain. For complete details 
of the experimental design, see [4]. We use the following 
evaluation protocol in the infant COPE experiments. First 
we divide the images by subject. The images of a given 
subject, s, form the testing set while the remaining subjects 
form the training set. This procedure is repeated for each 
subject. The images are resized to 100×120 pixels. Then 64 
overlapping cells of dimension 25×25 are created at steps of 
11 pixels for each image. A different classifier is trained on 
each of these cells, and the 64 classifier decisions are then 
combined. 

 
2D HeLa dataset 
The 2D HeLa dataset contains 862 single-cell images [28].4  
Each image is a 16 bit greyscale image of size 512 by 382 
pixels.  The dataset can be classified into ten classes: 
ActinFilaments, Endsome, ER, Golgi Giantin, Golgi 
GPP130, Lysosome, Microtubules, Mitochondria, 
Nucleolus, and Nucleus. The protocol used in our 
experiments is a 5-fold cross validation technique, with 
each dataset randomly divided into 4/5ths for training and 
1/5th for testing. When using DLBP/DLTP, the bin with the 
higher occurrence is discarded because it represents the 
black background.  
 
Pap smear dataset 

The pap smear database contains 917 samples 
collected at the Herlev University Hospital using a digital 
camera and microscope [29]. Two skilled cyto-technicians 
classified each cell into the two classes of normal versus 
abnormal. Each cell was examined by two cyto-technicians. 
A medical doctor examined cells that were difficult for the 
cyto-technicians to classify. To calculate the area under the 
ROC-curve, a 5-fold cross validation technique is 

 
4 HeLa dataset is available at http://murphylab.web.cmu. 
edu/. 
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employed, where each dataset is randomly divided into 
4/5ths for training and 1/5th for testing.  
 
DaimlerChrysler Pedestrian dataset 

The DaimlerChrysler pedestrian dataset [30]5 
contains a set of images with pedestrians and a set without 
pedestrians. This dataset is difficult to classify because the 
non-pedestrian samples include a number of images where a 
shape-based pedestrian detector resulted in low confidence 
matches.   In our experiments we extract a set of 4,900 
images from the original dataset. We use a 5-fold cross 
validation protocol, where each dataset is randomly split 
into 4/5ths for training and 1/5th for testing.  
 
LOCATE mouse protein sub-cellular localiz-
ation endogenous database 

The LOCATE mouse protein sub-cellular 
localization endogenous database contains approximately 
50 images. Each image contains somewhere between 1 and 
13 cells per class [31].6 The dataset is divided into eleven 
classes: Actin-Cytoskeleton, Cytoplasm, Endosomes, ER, 
Golgi, Lysosomes, Microtubule, Mitochondria, Nucleus, 
Peroxisomes, PM. We use a 5-fold cross validation 
protocol, where each dataset is randomly split into 4/5ths for 
training and 1/5th for testing. When using DLBP/DLTP, the 
bin with the higher occurrence is discarded because it 
represents the black background.  
 
5. Experimental results 

In table 1, we report our experimental results using 
the system architecture and datasets with performance 
indicators described in sections 3 and 4. In the first set of 
experiments, we used LBP with P=16 and R=2.  LBP-riu 
reports experiments using the standard rotation invariant 
uniform LBP descriptor. Dom K=X% reports experiments 
using DLBP with K=X.  VR(X) reports experiments using 
the X bins with highest variance in the training data. R-Dom 
K reports experiments obtained using our supervised 
random subspace method coupled with Dom K=90%. R-
VR(X) reports experiments using a random subspace of 
SVM obtained starting from the features selected by VR(X). 
R-(VR(250)+ NP) reports experiments using the ensemble 
method, detailed in section 2, based on the combination of 
random subspace, VR(250), and NPE. Finally, R-RIU 
reports the performance obtained by a random subspace of 
SVM obtained starting from the features RIU. 

                                                           
5 The DaimlerChrysler dataset is available at 
http://www.science.uva.nl/research/isla/dc-ped-class-
benchmark.html 
6 The LOCATE mouse protein sub-cellular localization 
endogenous database is available at http://locate.imb.uq.edu.au/ 

A similar set of experimental results is reported in 
Table 2. In these experiments LTP has P=16 and R=2. The 
threshold τ  in LTP is 3. 

 
 
Examining the two tables below, we can make the 

following conclusions: 
• Both dominant LBP and variance selection for LBP 

outperform standard LBP; 
• None of the methods work well with LBT. Both Dom 

K=80% ad Dom K=90%, when coupled with 
LPT, does not improve LTP. Also VR(250) does 
not improve LTP. Only VR(100) results in a 
performance that is similar to LTP; 

• NP does not perform well; 
• It is interesting to note that both for LBP and LTP, R-

VR(250) outperforms VR(250), and R-
(VR(250)+ NP) outperforms R-VR(250); 

• A random subspace of SVMs does not perform 
remarkably better when coupled with RIU (see 
the row R-RIU in the tables above). 

• Our idea of coupling random subspace, variance 
selection, and NPE, and the supervised random 
subspace for dominant LBP/LTP obtains the best 
performance. In our opinion this is due to the 
correlation among the selected bins.  

 
 We chose to couple random subspace with VR(250) 
because it contains many more features than VR(100).  
Using 250 features is a problem because of the possible 
correlation between the features and the high dimensionality 
of the vector (and the resulting curse of dimensionality). In 
the literature is well known that both these problems can 
partially be solved using random subspace ensemble. 
 We also ran some experiments with R-VAR(100).  The 
results are as follows: 

• LOCATE dataset: 0.843 (LBP) – 0.892 (LTP); 
• 2D-Hela dataset: 0.883 (LBP) – 0.915 (LTP); 
• PAP dataset:  0.822 (LBP) – 0.846 (LTP). 

 
 Looking at the these results with R-VAR(100), it is clear 
that there is no one clear winner in all the datasets (among 
the methods for selecting a set of bins). More experiments 
need to be performed to select the best way for selecting the 
most important bins in LBP/LTP. 

 
 

6. Conclusion 
In this paper, we perform a set of empirical 

experiments on several benchmark databases to determine  
the best method for selecting bins from the rotation 
invariant LBP/LTP. We compare several methods and reach 
the following conclusions: 1) both dominant and variance  
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Table 4.  Performance obtained by LBP with P=16 and R=2. 
 

LBP 
DATASETS 

2D-Hela PAP COPE Pedestrian LOCATE 

RIU 0.827 0.749 0.849 0.835 0.833 

Dom K=80% 0.837 0.831 0.852 0.838 0.825 

Dom K=90% 0.797 0.829 0.861 0.836 0.858 

VR(100) 0.826 0.822 0.864 0.827 0.843 

VR(250) 0.808 0.851 0.821 0.852 0.849 

NP 0.738 0.801 0.801 0.755 0.827 

R- Dom K 0.900 0.828 0.860 0.892 0.880 

R-VR(250) 0.839 0.843 0.861 0.857 0.870 

R-(VR(250)+ NP) 0.896 0.848 0.867 0.845 0.871 

R-RIU 0.776 0.730 0.874 0.868 0.774 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5.  Performance obtained by LTP with P=16 and R=2. 
 

LTP 
DATASETS 

2D-Hela PAP COPE Pedestrian LOCATE 

RIU 0.920 0.829 0.925 0.918 0.913 

Dom K=80% 0.893 0.834 0.900 0.927 0.884 

Dom K=90% 0.855 0.822 0.928 0.815 0.871 

VR(100) 0.892 0.849 0.915 0.945 0.872 

VR(250) 0.853 0.853 0.897 0.842 0.886 

NP 0.579 0.823 0.852 0.653 0.841 

R- Dom K 0.922 0.853 0.917 0.952 0.913 

R-VR(250) 0.901 0.852 0.918 0.909 0.886 

R-(VR(250)+ NP) 0.932 0.868 0.922 0.911 0.929 

R-RIU 0.909 0.814 0.925 0.951 0.907 
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set. Moreover, the power of our approach is tested on a 
broad spectrum of datasets: the Infant COPE database of 
selection work well with LBP; 2) none of the methods work 
very well with LTP; and 3) our approach obtains the best 
performance in almost all the datasets. It is clear that 
random subspace enables a selection of a wider set of bins 
and that it handles the correlation problems of the selected 
neonatal facial images; the 2D HeLa dataset and the Locate 
endogenous dataset of fluorescence microscope images; the 
Pap smear dataset of smear cells images; the Pedestrian 
dataset of pedestrian images.  

In the future, we plan to study the performance of the 
proposed texture descriptors when the feature extraction is 
performed from images that have been pre-processed using 
the different methods (e.g., Gabor filters). 
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