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Abstract - In this paper we make an extensive study of 
different methods for building ensembles of classifiers. We 
examine variants of ensemble methods that are based on 
perturbing features. We illustrate the power of using these 
variants by applying them to a number of different problems. 
We find that the best performing ensemble is obtained by 
combining an approach based on random subspace with a 
cluster-based input decimated ensemble and the principal 
direction oracle. Compared with other state-of-the-art stand-
alone classifiers and ensembles, this method consistently 
performed well across twelve diverse benchmark datasets. 
Another useful finding is that this approach does not require 
parameters to be carefully tuned for each dataset (in contrast 
to the fundamental importance of parameters tuning when 
using SVM and extreme learning machines), making our 
ensemble method well suited for practitioners since there is 
less risk of over-training. Another interesting finding is that 
random subspace can be coupled with several other ensemble 
methods to improve performance. 

Keywords: f input decimated ensembles, random subspace, 
multiclassifier systems, pattern classification. 

1 Introduction 
  Until recently, science worked with relatively small sets of 
data since collecting measurements was difficult, time 
consuming, and expensive. With increasingly cheaper and 
more powerful forms of computing and data storage, scientists 
in the 21st century are now producing far more information 
than can be processed. To truly assist practitioners in other 
fields, researchers in machine intelligence need to develop 
general purpose classification methods that are capable of 
handling a broad variety of problems and data types. These 
classification methods also need to be easy to use (requiring, 
for instance, little parameter tuning), and they need to compete 
well with less flexible state-of-the-art methods that have been 
crafted for very specific problems.  

 
One of the most promising techniques for improving 
flexibility and accuracy is to build systems that combine 
multiple classifiers [1]. The main idea behind a multiclassifier 
system is to average the hypotheses of a diverse group, or 
ensemble, of classifiers to produce a better approximation to a 

true hypothesis [2]. In this paper our aim is to compare several 
approaches for building ensembles of classifiers to find a 
method that works well across diverse datasets without careful 
parameters tuning for each dataset. In our investigation, we 
find that the best general purpose method combines an 
approach based on a random subspace with a cluster-based 
input decimated ensemble and the principal direction oracle. 
We find that this method compares very well with several 
state-of-the-art stand-alone and ensemble methods. 
 
The remainder of this paper is organized as follows. In section 
2 we describe several methods for constructing ensembles of 
classifiers. In section 3 we present our best ensemble method. 
In section 4 we apply our ensemble method to a diverse set of 
benchmark datasets to examine its flexibility and accuracy. 
Moreover, results of several state-of-the-art stand-alone and 
ensembles methods are compared with our approach using the 
same datasets. Finally, in section 5, we summarize our results 
and make suggestions for further research.  

2 Multiclassifier Systems 
 A simple classifier takes raw data from an input source, 
preprocesses and transforms it to reduce noise and to enhance 
correlation in the data, and then extracts relevant features. 
Classifier parameters are then continuously fine-tuned as the 
classifier optimally learns from a training set to assign 
predefined labels to unknown samples in a testing set. A 
multiclassifier system, in contrast, predicts class labels from 
previously unseen records in the testing set by aggregating 
predictions made by an ensemble of simple classifiers. Some 
common methods for aggregating the decisions of multiple 
classifiers include majority voting, sum rule, max rule, min 
rule, product rule, median rule, and Borda count are some of 
the most common methods [2]. 
  
There are several general approaches for constructing 
multiclassifiers. One approach is to focus on methods for 
dividing or perturbing either the patterns or the features in the 
training set. Another approach is to focus on methods for 
either combining the results of different classifier types or 
perturbing the parameters of a set of classifiers of the same 
type. Combinations of these approaches, or hybrid systems, 
have also been proposed. The three basic steps involved in 



constructing multiclassifier systems using the first approach 
are 1) generate K new training sets starting from the original 
training set; 2) train a different classifier for each of the K new 
training sets; and 3) combine the K classifiers using a decision 
rule. 

 
When ensembles are composed using pattern perturbation, 
new training sets are constructed by changing the patterns in 
the original training set. This is usually done iteratively. 
Common methods for constructing new training sets include 
Bagging [3], Class Switching [4], Decorate [5], and 
Boosting/AdaBoost [6]. In Bagging [3] new training sets, 
S1,…, SK, are subsets of the original training set. In Arcing [7] 
misclassified patterns are used to calculate the patterns 
included in each new training set. In Class Switching [4] K 
training sets are randomly created by changing the labels of a 
subset of the training set, and in Decorate [5] the training sets 
are constructed by adding patterns that the combined decision 
of the multiclassifier system misclassifies. In Boosting/ 
AdaBoost [6] each training pattern is given a weight that 
increases at each iteration for patterns that are most difficult to 
classify.  
  
Feature perturbation generates new training sets by changing 
the feature set. Common methods for perturbing features 
include Random Subspace [8], Cluster-based Pattern 
Discrimination [9], and Input Decimated Ensemble [10]. In 
Random Subspace [8] K new training sets are subsets of the 
feature set. In Cluster-based Pattern Discrimination[9] K new 
training sets are built by independently partitioning the classes 
into clusters and then by defining different features for each 
cluster. In Input Decimated Ensemble [10]  the new training 
set Si is obtained using the principal component analysis 
(PCA) transform which is calculated on the training patterns 
that belong to class i. One drawback using Input Decimated 
Ensemble is that the size of the ensemble is bounded by the 
number of classes. This limitation is avoided in [11], where 
the training patterns are partitioned into clusters, and the PCA 
transform is then performed on the training patterns within 
each cluster.  In the case of combining different classifiers, 
either different classifiers are used to build the ensemble or 
classifiers of the same type are used but with different 
parameter settings. In either case, the classifiers are trained on 
the same training set and the decisions are combined. 
Examples of systems that combine different types of classifiers 
include [12], where the decisions of five different classifiers 
(Logistic Regression, Linear Discriminant Analysis, Quadratic 
Discriminant Analysis, Naive Bayes, and K-Nearest 
Neighbors) are combined using a weighted-vote decision rule 
to predict which genes respond to stress.  
  

Hybrid methods combine different perturbation methods. 
Some examples include Random Forest [13], Rotation Forest 
[14], and RotBoost [15]. Random Forest [13] uses a bagging 
ensemble of Decision Trees, where a random selection of 
features are used to split a given node. In Rotation Forest 

[14], an ensemble of Decision Trees is used, where K new 
training sets are constructed by applying several PCA 
projections onto subsets of the training patterns. Several 
researchers have also reported the value of using Independent 
Component Analysis (ICA) as a feature transform for building 
a rotation forest ensemble (see, for example, [11]). In 
RotBoost [15] ensembes are constructed from Decision Trees 
that combine Rotation Forest and Adaboost. RotBoost has 
been shown to outperform Bagging, MultiBoost, Rotation 
Forest, and AdaBoost [15]). 

3 System architecture 
After extensive testing, we found that the best general purpose 
classifier system is a multiclassifier system that combines the 
random subspace supervised approach with a cluster based 
input decimated ensemble and the principal direction oracle. 
In this section, we provide a more detailed description of the 
ensemble methods used in our experiments. The classifier 
used in our ensembles, is the decision tree  with pruning, 
where the information gain is used as the binary splitting 
criterion [16].  
 
The proposed algorithm can be outlined as follows ; 

1. Extract a set of T subspace using the Learn.MF algorithm; 
2. Perform a linear hyperplane split of training samples by 

principal direction linear oracle; 
3. Train a cluster-based Input Decimated Ensemble; 
4. Combine the scores of the classifiers that built the 

ensemble by sum rule.1 
 

3.1 System ensemble methods 
Below we provide a short description of the various ensemble 
methods used in our experiments. 
 
Random Subspace (RS0) [8] reduces dimensionality by 
randomly sampling subsets of features (50% of all the features 
in our experiments). RS modifies the training dataset by 
generating K (K=50 in our experiments) new training sets and 
by building classifiers using these modified training sets. The 
results are combined using the sum rule 
 
Learn.MF (LM) [17] is a variant of random subspace. It trains 
an ensemble of classifiers with a subset of features, randomly 
drawn from a feature distribution, which is iteratively updated 
to favor the selection of those features that were previously 
undersampled. In our experiments, each subspace contains 
50% of the original features. 
 
Principal direction linear oracle (PD) [18] is an ensemble 
classifier used to invoke a linear hyperplane split of training 
samples. It is a variant of random oracle. The data of each of 

                                                           
1 We want to stress that all the parameters of the proposed system 

are the same in all the datasets without any ad hoc dataset tuning. 
 



the two subsets (obtained by splitting the training set using the 
hyperplane) are used to train two different classifiers. For each 
test pattern, the hyperplane is used to choose the best classifier 
for the given pattern. 
 
Input Decimated Ensemble (IDE) is a method for constructing 
ensembles based on pattern perturbation. In our experiments 
we use a variant of IDE, proposed in [11], where each 
classifier is trained using the feature transform Neighborhood 
Preserving Embedding (NPE) (see [19] for details) on a 
subset, randomly extracted, of the training patterns, with each 
subset containing patterns of only one class. The different 
classifiers are combined by sum rule. The MATLAB code 
used for NPE is freely available at http://www.cs.uiuc. 
edu/homes/dengcai2/Data data.html. 
 
4 Experimental results 
For comparing our proposed approaches with other state-of-
the-art methods, we report results obtained on the following 
twelve benchmark datasets, most of which are available in the 
UCI Repository (a detailed description of these databases is 
available on the UCI machine learning website at 
http://archive.ics.uci.edu/ml/): 1) The breast cancer dataset 
(BR); 2) The heart disease dataset (HE); 3) The Pima Indians 
Dataset (PI); 4) The Wisconsin breast dataset (WD); 5) A 
erythemato-squamous disease classification dataset  (DE); 6) 
The Ionosphere Data Set (IO); 7) The vehicle silhouettes 
dataset (VE); 8) The vowel dataset (VO); 9) The German 
Credit (CG); 10) The wine dataset (WI); 11) The sonar dataset 
(SO); and 12) The HIV dataset2 (HI). 
 
The evaluation protocol used in our experiments is fairly 
standard. As suggested by many classification approaches, the 
features in these datasets are linearly normalized between 0 
and 1. Results using these datasets are averaged over ten 
experiments. For each experiment we randomly resample the 
learning and the testing sets (containing respectively half of 
the patterns) while maintaining the distribution of the patterns 
in the classes. This is repeated ten times. The results are 
reported as the error area under the ROC curve (AUC). 
 
In the first set of experiments, we compare several approaches 
for building ensembles of classifiers using a feature 
perturbation approach. Several classifiers are tested for each 
method:  
• Support vector machine (OS): where the best kernel and the 

best set of parameters are chosen in each dataset; 
• RotationBoosting (RB): i.e., the method proposed in [15], in 

our experiments, 50 classifiers are combined; 

                                                           
2 Dataset used in T. Rögnvaldsson and L. You. "Why Neural 
Networks Should Not Be Used for HIV-1 Protease Cleavage Site 
Prediction". Bioinformatics, 20, pp. 1702-1709 (2004) after the 
orthonormal encoding the data are projetced by PCA in a 50-
dimensional space 

• Our improved version of IDE [11] (DE): where each class is 
partitioned into several clusters, see section 3.1. 

• Edited (ED), the ensemble based on adaboost of neural 
networks proposed in [20], where it is shown that it 
outperform the standard rotation forest.  

 
In Table 1 we report the performance obtained by:  
• SA: the stand-alone classifiers are used;  
• RS: a random subspace ensemble of 50 classifiers; 
• RR: the supervised subspace approach of [21] is used to 

create an ensemble of 50 classifiers. In this method the 
features are chosen according to their importance 
calculated using the mutual information. 

• LM: the method Learn++.MF (see section 3.3) is used to 
build an ensemble of 50 classifiers. 

 
The column Rank is reporting the average rank in the different 
datasets of the different classifiers (e.g., if a classifier always 
obtains the best performance in each dataset, its rank is 1). 

 
Analyzing the results reported in Table 1, we can draw the 
following conclusions: 
• The best performing ensemble methods are LM-DE and RS-

OS.  
• None of the tested classifiers generalizes better than any of 

the others, i.e., none outperforms any of the others across 
all the datasets.  

• It is very interesting to note that RS ensembles prove quite 
useful; the RS-RB outperforms stand-alone RB, and the 
RS- OS outperforms stand-alone OS. 

• RS-OS outperforms LM-DE; however, we want to stress the 
LM-DE uses the same parameters set in all the datasets. 

 
In Table 2 we try to improve LM-DE performance in the 
following way: 
• Missing: as proposed in [22], where a small percentage 

(5%) of features are replaced by mean imputation. In this 
way we create 50 different training set for building an 
ensemble of classifiers. 

• Switch, it is the switching method proposed in [4]; also in 
this case 50 classifiers are built. 

• PD: the principal direction linear oracle [18]. 
• RAND: the random spherical oracle where each method is 

based on 50% of the original features [23]. 
 

Analyzing the results reported in Table 2, we can draw the 
following conclusion: only PD improves (and only very 
slightly) the performance of LMF-DEC. In [24] it is shown 
that many types of classifier ensembles are improved by 
random oracle (one exception is the rotation forest). In our 
opinion, the performance of LMF-DEC is very high, so it 
probably could not be improved. 



 

Table 1. Experimental results #1: Comparison of several approaches for building ensembles of classifiers. 

 

 
 
 
Table 2. Experimental results #2: comparison of methods for improving LMF-DEC. 
 

 HE SO PI IO BR VE VO WD CG WI HI DE RANK 
LM-DE 0.919

5 
0.932

7 
0.819

8 
0.988

2 
0.991

2 
0.947

9 
0.992

7 
0.995

6 
0.805

0 
0.999

1 
0.959

3 
0.999

1 
2.8 

OS 0.914
6 

0.959
5 

0.822
4 

0.979
9 

0.992
5 

0.942
5 

0.987
3 

0.997
1 

0.813
4 

0.998
4 

0.964
7 

1.000
0 

2.6 

Missing 0.921
2 

0.913
8 

0.817
9 

0.983
3 

0.991
6 

0.938
6 

0.991
8 

0.994
3 

0.812
1 

0.999
1 

0.958
4 

0.999
2 

3.3 

Switch 0.898
8 

0.893
1 

0.808
1 

0.985
3 

0.989
5 

0.941
2 

0.990
8 

0.991
8 

0.792
4 

0.998
8 

0.936
1 

0.999
5 

4.8 

PD 0.918
0 

0.940
8 

0.814
6 

0.988
2 

0.991
4 

0.948
4 

0.993
9 

0.995
9 

0.807
6 

0.999
3 

0.958
4 

0.999
1 

2.7 

RAND 0.917
7 

0.918
0 

0.806
4 

0.983
2 

0.991
4 

0.940
1 

0.984
9 

0.996
1 

0.810
4 

0.998
8 

0.957
2 

0.998
9 

4.5 

     
 

 

  HE SO PI IO BR VE VO WD CG WI HI DE RANK 

SA RB 0.914
0 

0.915
6 

0.809
4 

0.981
2 

0.991
1 

0.939
4 

0.994
7 

0.996
8 

0.787
5 

0.997
0 

0.951
5     

0.9998     9.75 

OS 0.894
3 

0.952
2 

0.824
1 

0.981
1 

0.992
5 

0.946
0 

0.992
9 

0.996
2 

0.810
4 

0.998
2     

0.954
4     

0.9995     6.58 

RS RB 0.920
6 

0.933
1 

0.817
0 

0.984
7 

0.991
9 

0.939
6 

0.995
1 

0.996
1 

0.798
2 

0.999
0     

0.957
3     

0.9995     6.66 

DE 0.920
3 

0.919
8 

0.818
1 

0.986
4 

0.991
3 

0.944
6 

0.992
8 

0.995
6 

0.810
2 

0.999
2     

0.958
9     

0.9986     6.66 

ED 0.919
2 

0.928
4 

0.812
8 

0.983
0 

0.992
4 

0.912
0 

0.988
2 

0.995
2 

0.802
8 

0.998
9     

0.955
2     

0.9997     8.66 

OS 0.914
6 

0.959
5 

0.822
4 

0.979
9 

0.992
5 

0.942
5 

0.987
3 

0.997
1 

0.813
4 

0.998
4     

0.964
7     

1.0000     5.25 

RR RB 0.908
8 

0.915
2 

0.822
2 

0.984
4 

0.992
7 

0.927
2 

0.991
4 

0.995
9 

0.797
8 

0.998
6     

0.958
1     

0.9995     7.91 

DE 0.906
2 

0.918
1 

0.824
3 

0.985
4 

0.992
4 

0.929
4 

0.986
5 

0.995
2 

0.809
3 

0.998
6     

0.960
2     

0.9987     8.25 

ED 0.907
0 

0.944
5 

0.820
0 

0.981
9 

0.993
4 

0.904
2 

0.976
9 

0.994
5 

0.802
9 

0.998
6     

0.957
2     

0.9993     9.00 

OS 0.897
1 

0.978
4 

0.818
7 

0.978
4 

0.993
0 

0.925
8 

0.976
7 

0.997
6 

0.807
9 

0.998
5     

0.963
1     

0.9995     7.66 

LM RB 0.913
2 

0.935
4 

0.819
5 

0.983
0 

0.992
0 

0.941
5 

0.995
4 

0.996
4 

0.794
0 

0.998
8 

0.956
8 

0.9998 6.83 

DE 0.919
5 

0.932
7 

0.819
8 

0.988
2 

0.991
2 

0.947
9 

0.992
7 

0.995
6 

0.805
0 

0.999
1     

0.959
3     

0.9991     6.16 

ED 0.921
5 

0.927
7 

0.814
7 

0.981
6 

0.992
3 

0.913
5 

0.989
9 

0.995
6 

0.800
7 

0.998
7     

0.954
1     

 
0.9997     

8.91 

OS 0.913
6 

0.960
4 

0.818
4 

0.981
1 

0.992
5 

0.945
1 

0.989
4 

0.995
8 

0.803
4 

0.998
2 

0.966
6 

1.0000 6.66 



Table 3. Experimental results #3: comparison of methods for pruning LMF-PDO-DEC. 
 

 
 
 
Table 4. Experimental results #4:  comparison of our approach with several other state-of-the-art approaches. 
 

 HE SO PI IO BR VE VO WD CG WI HI DE RANK AVE 
LM-PD-
DE 

0.918
0 

0.940
8 

0.814
6 

0.988
2 

0.991
4 

0.948
4 

0.993
9 

0.995
9 

0.8076 0.9993 0.9584 0.9991 5.2 0.9463 

OS 0.914
6 

0.959
5 

0.822
4 

0.979
9 

0.992
5 

0.942
5 

0.987
3 

0.997
1 

0.8134 0.9984 0.9647 1.0000 3.8 0.9477 

FUS 0.917
7 

0.949
7 

0.822
2 

0.987
1 

0.992
0 

0.945
6 

0.996
1 

0.996
8 

0.8103 0.9996 0.9605 0.9997 3.5 0.9481 

Real 0.873
4 

0.891
0 

0.898
7 

0.915
6 

0.770
1 

0.801
0 

0.974
7 

0.980
4 

0.988
8 

0.990
8 

0.902
0 

0.927
1 

0.987
7 

0.990
9 

0.993
8 

0.995
0 

0.7315 
0.7330 

***** 
***** 

0.9363 
0.9348 

***** 
***** 

***** 
***** 

***** 
***** 

Gentle 0.882
7 

0.895
7 

0.907
8 

0.925
0 

0.770
7 

0.792
0 

0.970
8 

0.977
6 

0.985
7 

0.989
8 

0.916
5 

0.924
6 

0.989
1 

0.990
7 

0.994
7 

0.995
5 

0.7449 
0.7598 

0.8885 
0.9963 

0.9331 
0.9344 

0.9970 
0.9992 

13.2 
10.3 

0.9151 
0.9317 

Modest 0.874
1 

0.897
1 

0.897
9 

0.916
9 

0.791
9 

0.801
8 

0.968
7 

0.975
8 

0.987
7 

0.990
6 

0.741
5 

0.817
2 

0.435
8 

0.444
7 

0.993
6 

0.995
9 

0.6895 
0.7017 

0.9877 
0.9955 

0.9337 
0.9426 

0.8354 
0.8743 

15.0 
12.3 

0.8448 
0.8628 

AdaN 0.889
3 

0.920
6 

0.906
6 

0.935
1 

0.784
8 

0.818
9 

0.960
1 

0.977
7 

0.986
5 

0.990
7 

0.930
3 

0.936
9 

0.989
0 

0.982
7 

0.993
5 

0.995
9 

0.7167 
0.7832 

0.9810 
0.9990 

0.9543 
0.9568 

0.9975 
0.9997 

12.5 
7.4 

0.9241 
0.9414 

ELM 0.887
9 

0.916
1 

0.780
8 

0.899
1 

0.819
3 

0.822
4 

0.893
0 

0.975
2 

0.993
8 

0.993
2 

0.911
9 

0.926
5 

0.907
9 

0.956
8 

0.991
4 

0.995
5 

0.7589 
0.8073 

0.9906 
0.9981 

0.8218 
0.9584 

0.9924 
0.9995 

13.2 
8.0 

0.8958 
0.9373 

GP 0.903
0 

0.916
6 

0.941
1 

0.948
3 

0.826
8 

0.821
4 

0.971
1 

0.982
1 

0.992
4 

0.991
4 

0.946
2 

0.936
0 

0.983
3 

0.995
1 

0.996
1 

0.996
4 

0.8017 
0.8040 

0.9980 
0.9980 

0.9630 
0.9575 

0.9997 
1.0000 

6.4 
5.6 

0.9435 
0.9456 

Gasen 0.844
4 

0.920
1 

0.822
3 

0.889
7 

0.800
3 

0.821
9 

0.933
8 

0.983
3 

0.986
5 

0.992
1 

0.928
5 

0.943
8 

0.962
3 

0.988
4 

0.986
9 

0.997
0 

0.7351 
0.8107 

0.9931 
0.9990 

0.9177 
0.9547 

0.9971 
1.0000 

14.2 
5.3 

0.9090 
0.9417 

RA-we 
 

0.912
0 

0.918
9 

0.885
7 

0.879
4 

0.815
9 

0.810
1 

0.947
6 

0.967
4 

0.990
8 

0.991
4 

0.922
0 

0.904
0 

0.925
4 

0.914
9 

0.998
9 

0.996
3 

0.8038 
0.8121 

0.9992 
0.9992 

0.9665 
0.9651 

0.9998 
0.9998 

8.2 
8.2 

0.9306 
0.9299 

  

 HE SO PI IO BR VE VO WD CG WI HI DE RANK 
LM-PD-
DE 

0.918
0 

0.940
8 

0.814
6 

0.988
2 

0.991
4 

0.948
4 

0.993
9 

0.995
9 

0.807
6 

0.999
3 

0.958
4 

0.999
1 

2.9 

OS 0.914
6 

0.959
5 

0.822
4 

0.979
9 

0.992
5 

0.942
5 

0.987
3 

0.997
1 

0.813
4 

0.998
4 

0.964
7 

1.000
0 

3.2 

ORD 0.918
0 

0.912
6 

0.805
8 

0.987
1 

0.991
2 

0.946
9 

0.992
4 

0.995
2 

0.752
3 

0.998
8 

0.943
3 

0.998
6 

5.2 

KNORA 0.919
7 

0.925
0 

0.817
3 

0.986
3 

0.991
6 

0.950
0 

0.993
5 

0.995
8 

0.811
9 

0.999
1 

0.959
5 

0.999
2 

2.5 

SFFS1 0.908
1 

0.900
7 

0.819
3 

0.986
2 

0.991
0 

0.948
9 

0.991
1 

0.994
2 

0.804
2 

0.998
5 

0.953
2 

0.999
2 

5.1 

SFFS2 0.913
7 

0.897
8 

0.820
6 

0.986
3 

0.991
2 

0.947
5 

0.993
0 

0.995
8 

0.802
7 

0.999
2 

0.954
1 

0.999
2 

4.5 

SFFS3 0.917
7 

0.913
4 

0.817
4 

0.987
4 

0.991
5 

0.948
7 

0.992
3 

0.995
1 

0.807
6 

0.998
3 

0.947
9 

0.999
2 

4.4 

 
 

    



In Table 3 we test methods for pruning LMF-PD-DEC: 
• ORD: the pruning method proposed in [25]. We retain the 

100 best classifiers. 
• KNORA: as proposed in [26]. 
• SFFS1: SFFS for selecting 100 classifiers; the fitness 

function is the AUC obtained by the ensemble in the 
training set. 

• SFFS2: SFFS for selecting 100 classifiers; the fitness 
function is the AUC obtained by the ensemble in the 
training set + AUC obtained by the stand-alone classifier 
that we are choosing to decide whether to add or not to 
add it in the ensemble, in the training set. 

• SFFS3: SFFS for selecting 100 classifiers; the fitness 
function is the AUC obtained by the ensemble in the 
training set and the Q-statistic3 among the selected 
classifiers. 

 
Analyzing the results reported in Table 3, we can conclude 
that only KNORA permits a slight performance improvement. 
Unfortunately, all the pruning methods reduce performance. 
We also tested other methods, such as using a genetic 
algorithm for weighing each classier or the pruning method 
reported in [27], but they obtained even lower performances. 

 
As stated above, in our opinion the extremely high 
performance of LM-PD-DE is so high that it probably cannot 
be improved. It may be the case that pruning methods using it 
should be studied using very large datasets where a large 
validation set could be extracted. 

 
In Table 4 we compare our approach with several other state-
of-the-art approaches (for a fair comparison we used the 
MATLAB code shared by the original developers of each 
method). Each cell in Table 4 contains two values: the first is 
the performance obtained using the standard approach, and the 
second is the performance obtained using a random subspace 
of 50 classifiers. FUS is the fusion by sum rule of GPC and 
our LM-PD-DE. Our aim is to investigate whether a 
heterogeneous ensemble improves the two highest performing 
systems. 
 
We compare the following methods in experiment 4: 
• Real: RealAdaboost as implemented in GML AdaBoost 

Matlab Toolbox using the decision tree as classifier [28]; 
• Gentle: GentleAdaboost as implemented in GML AdaBoost 

Matlab Toolbox using the decision tree as classifier [29]; 
• Modest: ModestAdaboost as implemented in GML 

AdaBoost Matlab Toolbox using the decision tree as 
classifier [30]; 

• AdaN: AdaBoost.M2 using the neural network as classifier. 
• ELM [31]: Extreme Learning Machine where the type of 

activation and the number of hidden neurons is optimized 
in each dataset http://www3.ntu.edu.sg/home/egbhuang/ 

                                                           
3 It is a measure of the statistical independence among a set of 
classifiers 

• GP4: the Gaussian process classifier [32]. 
• Gasen [33]: selective ensemble method using genetic 

algorithm to select a subset of neural networks 
http://lamda.nju.edu.cn/datacode/GASEN/gasen.htm. As 
the validation set, we have tested two methods: 1) all the 
training set; and 2) a subset of patterns is extracted from the 
training set and used as validation set. For each dataset we 
have reported only the best method. 

• RA-we: the ensemble of modified RealAdaboost proposed 
in [34]; in this approach the neural network is used as 
classifier.  

 
Analyzing the results reported in Table 5, we observe: 
• GPC obtains a performance that is similar to SVM,  
• It is very interesting to note that RS ensembles are shown to 

be very useful when coupled with some methods. Gasen, 
ELM and several kinds of AdaBoost (all, except RA-we) 
are greatly improved when coupled with random 
subspace. 

 
We want to stress that the fusion method named FUS 
outperforms a finely tuned ensemble of SVMs, where a 
different kernel is used for each dataset along with a different 
set of parameters. 

5 Conclusion and Discussion 
 The goal of this paper was to discover methods for building 
a generalized ensemble of classifiers requiring little or no 
parameter tuning that performs well across an array of 
different problems. We performed an empirical comparison of 
several multiclassifier systems using several benchmark 
datasets that address very different problems. Our 
experimental results show that our new ensembles of decision 
trees outperform state-of-the-art stand-alone and ensemble 
methods. 
 
Unfortunately, it was not possible for us to find a single 
ensemble method that outperformed all the other classifiers 
across all the tested datasets (the "no free lunch" theorem). 
Nonetheless, some practical findings are reported. We show 
that the highest performance is obtained by combining a 
“supervised” RS with a cluster-based input decimated 
ensemble and the principal direction oracle. 
. 
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